Fall 2009: MTH 9821 Numerical Linear Algebra

Tuesday 6–8:30pm, Room 10-180

Instructor: Dan Stefanica

Textbooks:

Other Reference Books:

Detailed Syllabus

- **Week 1**
 - Brief review of linear algebra.
 - Direct methods for solving linear problems.
 - Forward and backward substitution.
 - LU decomposition. Definition, existence and uniqueness issues.
 - Pseudocode and operation count for the LU decomposition.
 - Applications of the LU decomposition: computing the determinant of a matrix; solving multiple linear systems corresponding to the same matrix; computing the inverse of a nonsingular matrix.
 - LU decomposition for banded matrices.

- **Week 2**
 - Need for pivoting for the LU decomposition.
 - Permutation matrices: properties and storage.
 - LU decomposition with (partial) row pivoting.
 - LU decomposition with row pivoting for banded matrices.
 - Symmetric positive definite matrices.
 - Cholesky factorization.

Readings: Trefethen, Lectures 21, 23. Instructor’s Notes.

- **Week 3**
 - Existence and uniqueness of the Cholesky decomposition.
 - Cholesky factorization for banded and sparse matrices.
 - Iterative Methods for solving Linear Systems. Example: Richardson iteration.
Readings: Demmel, Chapter 6. Trefethen, Lectures 11, 22, 32. Instructor’s Notes.

• Week 4
 • Jacobi, Gauss-Siedel, and SOR methods. Pseudocodes.
 • Convergence analysis for the Jacobi, Gauss-Siedel, and SOR iterative methods.
 • Comparing the convergence speed of different methods.
 • Least Squares Method.

• Week 5
 • Convergence speed of iterative methods.
 • Eigenvalue problems.
 • Power Method.
 • Inverse Power Method.

Readings: Trefethen, Lectures 24, 25, 28. Instructor’s Notes.

• Week 6 Midterm Exam

• Week 7
 • Equity, Index, and Currency options.
 • The Black-Scholes Formula.
 • Approximation of the BS formula for at the money options.
 • Put-Call parity. No-arbitrage principle.
 • American Call options on non-dividend paying underlying.
 • Valuing plain vanilla options for limiting cases.
 • Greeks. Hedging.

Readings: Wilmott, Chapter 3. Clewlow, Chapter 1. Instructor’s Notes.

• Week 8
 • Derivation of the Black-Scholes PDE. Properties of the Black-Scholes PDE.
 • Financial interpretation of the terms from the Black-Scholes PDE.
 • Change of variables to reduce the BS PDE to the diffusion equation.
 • Boundary conditions for the Black-Scholes PDE and the effect of the change of variables.
 • Closed form solution of the heat equation.
 • Derivation of the Black-Scholes formulas.
 • Derivation of the Black-Scholes PDE for multi-assets options.

• Week 9
 • Finite difference approximations. Finite difference discretization and solution of a second order ODE.
 • Finite difference methods for solving the heat PDE: Forward Euler, Backward Euler, and Crank-Nicolson.
 • Finite difference discretization and solution of the diffusion equation.

• Week 10
 • Finite difference methods for solving the BS PDE. Boundary Conditions.
 • Pricing European plain vanilla options using Forward Euler, Backward Euler, and Crank-Nicolson.
 • Comparison of domain discretizations for solving the Black-Scholes PDE.
• Finite difference approximations of the Greeks.

Readings: Wilmott, Chapters 4, 8. Clewlow, Chapter 3. Instructor’s Notes.

• Week 11
 • Projected SOR.
 • Forward and Backward Euler schemes for pricing American plain vanilla options.

Readings: Wilmott, Chapters 8, 9. Clewlow, Chapter 3. Instructor’s Notes.

• Week 12
 • Barrier options. Closed Formulas. Arbitrage pricing.
 • Pricing European barrier options using Forward Euler, Backward Euler, and Crank-Nicolson.
 • Domain discretization for pricing Bermudan options using finite difference methods.
 • Forward Euler, Backward Euler, and Crank-Nicolson for Bermudan options pricing and Greeks approximations.

Readings: Wilmott, Chapter 12.

• Week 13
 • Domain discretization for finite difference pricing of options on underlying assets paying discrete dividends.
 • Finite difference approximations of option values and Greeks for plain vanilla, barrier, and Bermudan options on underlying assets paying discrete dividends.
 • Implied volatility computations using finite difference methods.

• Week 14
 • Derivation of the Barone-Adesi–Whaley approximate formula for American plain vanilla options.
 • Newton’s method and the implementation of the Barone-Adesi–Whaley formula.
 • Computing an approximate implied volatility for American plain vanilla options using the Barone-Adesi–Whaley formula.